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Abstract: Glioblastoma multiforme (GBM) is the most common and deadliest primary brain tumor
in adults. Despite the advances in GBM treatment, outcomes remain poor, with a 2-year survival rate
of less than 5%. Hyperbaric oxygen (HBO) therapy is an intermittent, high-concentration, short-term
oxygen therapy used to increase cellular oxygen content. In this study, we evaluated the effects of
HBO therapy, alone or combined with other treatment modalities, on GBM in vitro and in vivo. In
the in vitro analysis, we used a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay to assess the effects of HBO therapy alone, a colony formation assay to analyze the effects of
HBO therapy combined with radiotherapy and with temozolomide (TMZ), and a neurosphere assay
to assess GBM stemness. In the in vivo analysis, we used immunohistochemical staining and in vivo
bioluminescence imaging to assess GBM stemness and the therapeutic effect of HBO therapy alone or
combined with TMZ or radiotherapy, respectively. HBO therapy did not affect GBM cell viability,
but it did reduce the analyzed tumors’ ability to form cancer stem cells. In addition, HBO therapy
increased GBM sensitivity to TMZ and radiotherapy both in vitro and in vivo. HBO therapy did not
enhance tumor growth and exhibited adjuvant effects to chemotherapy and radiotherapy through
inhibiting GBM stemness. In conclusion, HBO therapy shows promise as an adjuvant treatment
for GBM by reducing cancer stem cell formation and enhancing sensitivity to chemotherapy and
radiotherapy.
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1. Introduction

Glioblastoma multiforme (GBM), a highly aggressive brain cancer that originates in
glial cells, is the most common and deadliest form of primary brain tumor in adults. It
accounts for approximately 15% of all brain tumors and 50% of all gliomas [1,2], with a
global incidence of approximately 3–4 cases per 100,000 individuals [3]. Although the
etiology of GBM remains unknown, several risk factors have been identified, including a
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family history of brain tumors, exposure to radiation, and certain genetic disorders [4–6].
Its clinical presentation depends on the location and size of the tumor and can include
headaches, seizures, changes in vision or speech, weakness, and cognitive impairment [7,8].
GBM treatment involves a multidisciplinary approach that includes surgery, radiation
therapy, and chemotherapy [9,10]. However, due to its aggressive nature, the rate of
recurrence is high, with most patients requiring additional treatment [11,12]. Despite the
advances in treatment, GBM prognosis remains poor, with a median survival of less than
12–15 months [13].

Hyperbaric oxygen (HBO) therapy is a medical treatment consisting of breathing
pure oxygen in a pressurized chamber [14]. The chamber is pressurized to a level higher
than that at sea level, and pure oxygen is delivered at a higher concentration than normal
atmospheric levels, allowing for improved oxygen delivery to the body’s tissues, which
can promote healing and reduce inflammation [15,16]. HBO therapy has been used to treat
a variety of conditions, including decompression sickness, carbon monoxide poisoning,
non-healing wounds (like diabetic foot ulcers), radiation injuries, and traumatic brain
injuries [17–21]. It is also being explored as a potential treatment for stroke, Alzheimer’s
disease, and autism [22,23]. Additionally, HBO therapy is sometimes used in cancer
treatment to increase the oxygen supply to tumors, which can enhance the effectiveness of
radiation therapy and chemotherapy [24–26].

This study aimed to investigate the therapeutic effect of HBO therapy, alone or com-
bined with other treatment modalities, by assessing its effects on GBM cell viability and
stemness in vitro and in vivo.

2. Materials and Methods
2.1. Cell Cultures and Treatment Conditions

GBM8401 and T98G GBM cell lines were obtained from the Bioresource Collection and
Research Center and American Type Culture Collection cell banks. GBM8401 cells were
cultured in Roswell Park Memorial Institute 1640 medium with 10% fetal bovine serum
(FBS) in an atmosphere of 5% carbon dioxide (CO2) at 37 ◦C. T98G cells were cultured in
Eagle’s minimum essential medium with 10% FBS in an atmosphere of 5% CO2 at 37 ◦C.
HBO therapy conditions were induced by incubating cells in an atmosphere of 100% oxygen
at 1.5 atm for 1.5 h every day.

2.2. Cell Viability Assay

GBM cell viability following HBO therapy alone or combined with temozolomide
(TMZ) was assessed using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT) assay. GBM8401 and T98G cells (3 × 104 cells per 0.5 mL medium per well)
were cultured on a 24-well plate and incubated in an atmosphere of 5% CO2 at 37 ◦C
for 24 h. Next, cells were co-cultured with TMZ and/or incubated under HBO therapy
conditions for 24, 48, and 72 h and subsequently counted.

2.3. Neurosphere Assay

GBM stemness was assessed using a neurosphere assay. In first sphere formation,
GBM8401 and T98G cells (100 cells of each) were cultured in a stem cell medium containing
10% Fetal Bovine Serum (FBS), 20 ng/mL of basic fibroblast growth factor, and 20 ng/mL of
epidermal growth factor on an ultra-low 24-well plate for 14 days. In secondary formation,
we individually dissociated a single cell with 1 mg/mL of collagenase from first sphere
formation in GBM8401 and T98G cells, and 100 cells were cultured in a stem cell medium
containing 10% Fetal Bovine Serum (FBS), 20 ng/mL of basic fibroblast growth factor, and
20 ng/mL of epidermal growth factor on an ultra-low 24-well plate for 14 days. Five random
images were taken, and neurospheres were counted and measured under a microscope at
200× magnification.
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2.4. Colony Formation Assay

To assess the effects of HBO therapy combined with TMZ, a colony formation assay
was used. GBM8401 and T98G cells were seeded on 6-well plates at a density of 100 cells
per well for TMZ doses of 0, 5, 10, 15, 20, and 25 µM. After a 10-day incubation, plates were
stained with 0.5% crystal violet (Sigma; MFCD00011750) and cell colonies were counted.
The number of formed colonies was normalized to the plating efficiency and represented
as a cell viability relative to the control.

In addition, a colony formation assay was also used to assess the effects of HBO
therapy combined with radiotherapy. GBM8401 and T98G cells were seeded on 6-well
plates at densities of 100, 200, 400, 1000, and 10,000 cells per well for radiation doses of
0, 1, 2, 4, and 8 Gy, respectively. A linear accelerator was used to irradiate cells at room
temperature. After a 10-day incubation, plates were stained with 0.5% crystal violet (Sigma,
St. Louis, MO, USA; MFCD00011750) and cell colonies were counted. The number of
formed colonies was normalized to the plating efficiency and represented as a surviving
fraction relative to the control. The plating efficiency and surviving fraction were calculated
as follows: plating efficiency = (number of colonies formed/number of inoculated cells) ×
100%; surviving fraction = number of colonies formed/(number of seeded cells × [plating
efficiency/100]).

2.5. Animal Model

Sixty immunodeficient and NU/NU nude mice were obtained from the LASCO
Laboratory Animal Center (Taipei, Taiwan). All mice were housed at a constant temperature
(24 ◦C) and under regular light/dark cycles between 6:00 am and 6:00 pm, with free access
to a standard diet. GBM8401 cells with luciferase (1 × 105 cells in a volume of 5 µL)
were injected intracranially into the striata of immunodeficient mice. GBM8401 cells
(1 × 105 cells in a volume of 5 µL) were injected intracranially into the striata of NU/NU
nude mice. For HBO therapy, mice were placed in an atmosphere of 100% oxygen at 1.5 atm
for 1.5 h every day on days 1–21 after tumor cell injection. For chemotherapy, mice were
injected intraperitoneally with 10 mg/kg of TMZ every day on days 7–21 after tumor cell
injection. For radiotherapy, mice were treated with 2 Gy of radiation three times per week
on days 7–21 after tumor cell injection. The protocol of the animal study was approved
by the Committee of Institutional Animal Research of Kaohsiung Medical University
(IACUC 111223). To assess the effect of HBO therapy in vivo, we evaluated the tumor
sizes using in vivo bioluminescence imaging via the Xenogen IVISR Spectrum Noninvasive
Quantitative Molecular Imaging System (J&H, Hongkong, China; IVIS Lumina LT 2D)
at 7, 14, and 21 days after injection with GBM cells and compared them among the mice
treated with HBO therapy, TMZ, radiotherapy, and HBO therapy combined with TMZ
or radiotherapy.

2.6. Immunohistochemical Staining

At 21 days after tumor cell injection, the brain tissue was removed, and immunohisto-
chemical staining was performed to assess the proportion of CD133-positive cells. Each
tissue block was fixed in formalin, embedded in paraffin, and cut into 3 µm thick sections.
The sections were deparaffinized, rehydrated, and autoclaved at 121 ◦C for 10 min in
Target Retrieval solution (pH 9.0; Dako; S2368; Glostrup, Danmark) to retrieve the antigens.
After 20 min at room temperature, endogenous peroxidase was blocked by adding 3%
hydrogen peroxide for 5 min. After being washed with Tris buffer twice, the sections were
incubated with anti-CD133 (1:50; Sigma; ZRB1013; St. Louis, MO, USA) antibody for 1 h at
room temperature, washed twice with Tris buffer again, and subsequently incubated with
horseradish-peroxidase-conjugated secondary antibody for 30 min at room temperature.
Finally, the sections were incubated in 3,3-diaminobenzidine (Dako; K5007; Danmark) for
5 min, counterstained with Mayer’s hematoxylin for 90 s, and mounted with Malinol.
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2.7. Western Blot Assay

For protein extraction, all samples were treated with 200 µL of lysis buffer. Following
lysing, 50 µg of protein from each sample was loaded into the wells of a sodium dodecyl
sulfate-polyacrylamide gel and subjected to electrophoresis at 50 V for a duration of 4 h.
Subsequent to electrophoresis, the proteins were transferred onto poly(vinylidene fluoride)
membranes. After a 1 h incubation in a blocking buffer, the membranes were exposed to
primary antibodies. These primary antibodies included CD133 (1:200; Sigma; ZRB1013;
USA), OCT4 (1:500; Abcam; Cambridge, UK), SOX2 (1:500; Abcam; UK), and β-actin
(A5441; 1:20,000; Sigma; USA). Incubation with these primary antibodies was carried out
at 4 ◦C for 16 h. Subsequently, the membranes were incubated with secondary antibodies
for 90 min. The secondary antibodies employed were goat anti-rabbit (AP132P, 1:5000;
Millipore, Billerica, MA, USA) and goat anti-mouse antibodies (AP124P, 1:5000; Millipore).
Specific protein bands were visualized using an enhanced chemiluminescence solution
(Western Lightning, 205-14621; Perkin Elmer, Waltham, MA, USA), and image acquisition
and analysis were performed using the MiniChemiTM imaging and analysis system (Beijing
Sage Creation, Beijing, China).

2.8. Statistical Analysis

All statistical analyses were conducted using SPSS 24.0 software (IBM; Armonk, NY,
USA). For the quantitative analysis of Western blot data, we utilized the Student’s t-test.
Kaplan–Meier survival curves were employed to assess survival rates. Additionally, two-
way ANOVA was applied for statistical analyses involving time points or dosage effects. A
significance level of p < 0.05 was considered statistically significant.

3. Results
3.1. Effect of HBO Therapy on GBM Cell Viability In Vitro

In the MTT assay, we aimed to investigate the impact of HBO therapy on cell viability
over a specific time course. Specifically, we assessed cell viability at 24, 48, and 72 h after
HBO therapy in GBM8401 and T98G cells compared to their respective pre-HBO therapy
values (Figure 1). These experiments were designed to determine whether HBO therapy
had any significant influence on the proliferation of GBM cells in vitro.
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Figure 1. Effect of HBO therapy on GBM cell viability. An MTT assay was used to evaluate the effect
of HBO therapy on GBM cell viability. GBM8401 and T98G cells were incubated in an atmosphere of
100% oxygen at 1.5 atm for 1.5 h every day, and cell viability was assessed at 24, 48, and 72 h. GBM,
glioblastoma multiforme; HBO therapy, hyperbaric oxygen therapy.

3.2. Effect of HBO Therapy Combined with Chemotherapy or Radiotherapy In Vitro

In the colony formation assay, at 14 days after HBO therapy combined with TMZ, the
proportion of viable cells was lower than that in the control group for TMZ doses of 0, 5, 10,
15, 20, and 25 µM in GBM8401 and T98G cells (Figure 2). The result obtained from two-way
ANOVA showed that the cell viability of the HBO group was significantly lower than that



Curr. Issues Mol. Biol. 2023, 45 8313

of control group with TMZ in the GBM8401 and T98G cells. These findings indicate that
HBO therapy induced adjuvant effects on chemotherapy with TMZ in GBM cells in vitro.
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Figure 2. Effect of HBO therapy on TMZ sensitivity of GBM in vitro. To evaluate the therapeutic
effect of HBO therapy alone or combined with TMZ, GBM8401 and T98G cells incubated with or
without HBO therapy were treated with different doses of TMZ (0, 5, 10, 15, 20, and 25 µM) using
0.5% crystal violet. * p < 0.05 and *** p < 0.001 compared between control group and HBO group.
GBM, glioblastoma multiforme; HBO therapy, hyperbaric oxygen therapy; TMZ, temozolomide.

In the colony formation assay, at 10 days after HBO therapy combined with radiother-
apy, the surviving fraction was lower than that in the control group at radiation doses of 4
and 8 Gy in the GBM8401 cells and at radiation doses of 2, 4, and 8 Gy in the T98G cells
(Figure 3). Furthermore, the statistical analysis using a two-way ANOVA revealed that
these observed differences in the surviving fractions between the treatment groups and
control group were statistically significant. This analysis strengthens the conclusion that
HBO therapy, when combined with radiotherapy, has a significant adjuvant effect on GBM
cells in vitro.

Curr. Issues Mol. Biol. 2023, 3, FOR PEER REVIEW 5 
 

 

10, 15, 20, and 25 µM in GBM8401 and T98G cells (Figure 2). The result obtained from two-
way ANOVA showed that the cell viability of the HBO group was significantly lower than 
that of control group with TMZ in the GBM8401 and T98G cells. These findings indicate 
that HBO therapy induced adjuvant effects on chemotherapy with TMZ in GBM cells in 
vitro. 

 
Figure 2. Effect of HBO therapy on TMZ sensitivity of GBM in vitro. To evaluate the therapeutic 
effect of HBO therapy alone or combined with TMZ, GBM8401 and T98G cells incubated with or 
without HBO therapy were treated with different doses of TMZ (0, 5, 10, 15, 20, and 25 µM) using 
0.5% crystal violet. * p < 0.05 and *** p < 0.001 compared between control group and HBO group. 
GBM, glioblastoma multiforme; HBO therapy, hyperbaric oxygen therapy; TMZ, temozolomide.  

In the colony formation assay, at 10 days after HBO therapy combined with radio-
therapy, the surviving fraction was lower than that in the control group at radiation doses 
of 4 and 8 Gy in the GBM8401 cells and at radiation doses of 2, 4, and 8 Gy in the T98G 
cells (Figure 3). Furthermore, the statistical analysis using a two-way ANOVA revealed 
that these observed differences in the surviving fractions between the treatment groups 
and control group were statistically significant. This analysis strengthens the conclusion 
that HBO therapy, when combined with radiotherapy, has a significant adjuvant effect on 
GBM cells in vitro. 

 
Figure 3. Effect of HBO therapy on radiotherapy sensitivity of GBM in vitro. To evaluate the thera-
peutic effect of radiotherapy alone or combined with HBO, GBM8401 and T98G cells incubated with 
or without HBO therapy were treated with different doses of radiation (0, 1, 2, 4, and 8 Gy) following 

Figure 3. Effect of HBO therapy on radiotherapy sensitivity of GBM in vitro. To evaluate the
therapeutic effect of radiotherapy alone or combined with HBO, GBM8401 and T98G cells incubated
with or without HBO therapy were treated with different doses of radiation (0, 1, 2, 4, and 8 Gy)
following a colony formation assay. *** p < 0.001 compared between control group and HBO group.
GBM, glioblastoma multiforme; HBO therapy, hyperbaric oxygen therapy.
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3.3. Effect of HBO Therapy on GBM Stemness In Vitro and In Vivo

In the neurosphere assay (Figure 4A), the first sphere size after HBO therapy was
significantly smaller than that in the control group in the GBM8401 and T98G cells
(Figure 4B); however, no significant differences were found in terms of the number of
spheres (Figure 4B). These findings indicate that HBO therapy decreased the ability of
GBM cells to form cancer stem cells (CSCs) but did not induce cell death. However, the
secondary sphere formation assay revealed reductions in both sphere size and number
in the HBO group, further supporting the conclusion that HBO therapy impacted the
formation of CSCs. The cells had a reduced capacity to form both larger and smaller sec-
ondary spheres after exposure to HBO therapy. In addition, we conducted a Western blot
analysis to further investigate the impact of HBO therapy on the secondary sphere forma-
tion process, specifically focusing on the stemness-related biomarkers CD133, OCT4, and
SOX2. The results revealed that in both GBM8401 and T98G cells, the protein expression
levels of CD133, OCT4, and SOX2 were significantly lower in the HBO group compared to
the control group. This observation indicates that HBO therapy not only influenced the
size and number of secondary spheres but also led to reduced protein expression of the
critical stemness markers CD133, OCT4, and SOX2 in GBM cells (Figure 5). These findings
collectively suggest that HBO therapy may hinder the formation and maintenance of cancer
stem cells (CSCs) in GBM, potentially contributing to its therapeutic effects.
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Figure 4. Effect of HBO therapy on GBM stemness in vitro. A neurosphere assay was used to evaluate
the effect of HBO therapy on GBM stemness in vitro. The number and size of neurospheres at first
and secondary sphere formation were measured in GBM8401 and T98G cells treated or untreated
with HBO therapy. (A) Microscopic images of neurospheres in GBM8401 and T98G cells treated
or untreated with HBO therapy (magnification ×100); (B) Box plots of the number and size of
neurospheres measured with or without HBO therapy in GBM8401 and T98G cells. ** p < 0.01 and
*** p < 0.001 compared between control group and HBO group. GBM, glioblastoma multiforme; HBO
therapy, hyperbaric oxygen therapy.
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Figure 5. The protein expression of biomarker for GBM stemness in GBM8401 and T98G. The protein
expression and relative intensity for CD133, OCT4, and SOX2 determined using Western blot in GBM8401
and T98G cells. * p < 0.05 and *** p < 0.001 compared between control group and HBO group.

In vivo, the results demonstrated significant differences between the control and HBO
therapy groups in terms of CD133 expression (Figure 6A). Immunohistochemical staining
for CD133 (Figure 6A) showed a notable decrease in CD133-positive cells in the HBO
therapy group compared to the control group. This decrease in CD133-positive cells was
quantified (Figure 6B), confirming a significantly lower proportion of CD133-positive cells
in the HBO group. To gain further insights into the molecular changes associated with
these findings, we conducted Western blot analysis (Figure 6C). This analysis encompassed
the evaluation of the protein levels of CD133, OCT4, and SOX2. Remarkably, the Western
blot results revealed that the HBO therapy group exhibited markedly reduced protein
expression levels of CD133, OCT4, and SOX2 when compared to the control group. These
combined observations strongly support the notion that HBO therapy has the potential to
inhibit the formation and maintenance of cancer stem cells (CSCs) in vivo.
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NU/NU nude mice. Mice received HBO therapy every day and were sacrificed at day 21. Im-
munohistochemical staining was performed to detect CD133-positive cells. (A) Microphotographs
showing immunohistochemical staining for CD133; (B) box plots of the number of CD133-positive
cells. (C) The protein expression and relative intensity for the stemness biomarkers CD133, OCT4, and
SOX2 determined using Western blot assay in GBM from mice. *** p < 0.001 compared between control
group and HBO group. GBM, glioblastoma multiforme; HBO therapy, hyperbaric oxygen therapy.

3.4. Effect of HBO Therapy Alone and Combined with Chemotherapy or Radiotherapy In Vivo

In the in vivo bioluminescence imaging results depict various treatment groups, in-
cluding the control group, HBO therapy alone, TMZ therapy alone, HBO therapy combined
with TMZ, radiotherapy (RT) alone, and HBO therapy combined with RT (Figure 7A). In
Figure 7B, the bioluminescence imaging quantification results and a survival rate compari-
son between the control group and the HBO therapy group are shown. A two-way ANOVA
analysis revealed that there were no significant differences in bioluminescence imaging
intensity between these two groups (p = 0.244). Moreover, the mean survival time for the
control group was 19.667 ± 1.542 days, while the HBO therapy group exhibited a mean
survival time of 18.333 ± 0.843 days, with no statistically significant difference observed.
The results of bioluminescence imaging quantification and survival rate comparison be-
tween the TMZ therapy group and the HBO + TMZ therapy group are shown in Figure 7B.
Two-way ANOVA analysis demonstrated that the HBO + TMZ group had significantly
lower luciferase intensity compared to the TMZ group. Furthermore, the mean survival
time for the TMZ group was 30.5 ± 1.118 days, while the HBO + TMZ group exhibited a
significantly extended mean survival time of 39 ± 1.751 days (p = 0.002). Finally, the results
of bioluminescence imaging quantification and survival rate comparison between the RT
therapy group and the HBO + RT therapy group are shown in Figure 7D. According to
the two-way ANOVA analysis, the HBO + RT group showed significantly lower luciferase
intensity compared to the RT group. Additionally, the mean survival time for the RT group
was 29.5 ± 1.176 days, whereas the HBO + RT group displayed a substantially longer
mean survival time of 42.833 ± 3.781 days (p = 0.004). These findings collectively suggest
that HBO therapy induces adjuvant effects in both chemotherapy and radiotherapy in the
context of GBM in vivo.
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cells stained with luciferase were injected intracranially into NU/NU nude mice. Mice received
HBO therapy every day, TMZ every day, and/or radiotherapy three times every week, and they
were sacrificed at day 21. At days 7, 14, and 21, in vivo bioluminescence imaging was used to
measure luciferase intensity. (A) In vivo bioluminescence images obtained at days 7, 14, and 21 with
or without conducting HBO therapy, TMZ, and radiotherapy; (B) luciferase intensity and survival
time comparison between the control and HBO therapy groups; (C) luciferase intensity and survival
time comparison between the TMZ and HBO therapy + TMZ groups; (D) luciferase intensity and
survival time comparison between the RT and HBO therapy + RT groups. *** p < 0.001 compared
between control group and HBO group. GBM, glioblastoma multiforme; HBO therapy, hyperbaric
oxygen therapy; TMZ, temozolomide; RT, radiotherapy.

4. Discussion

In the present study, we explored the impact of hyperbaric oxygen (HBO) therapy on
glioblastoma multiforme (GBM) cells both in vitro and in vivo. Our investigations began by
assessing GBM cell viability, wherein HBO therapy was found to have no significant effect
on cell proliferation. In the combination therapies, we delved into the synergy between
HBO therapy and chemotherapy (TMZ)/radiotherapy. Notably, our findings indicated
that HBO therapy acted as a potent adjuvant, enhancing the effectiveness of both TMZ and
radiotherapy, resulting in reduced cell viability in GBM cells grown in vitro. Additionally,
we investigated the influence of HBO therapy on GBM stemness. We discovered that HBO
therapy decreased the ability of GBM cells to form cancer stem cells (CSCs) in primary
and secondary neurosphere formation assays. Western blot analyses substantiated these
observations by revealing reduced protein levels of crucial stemness markers, such as
CD133, OCT4, and SOX2, suggesting that HBO therapy hindered CSC formation and
maintenance. Finally, in our in vivo experiments, we found that HBO therapy led to a
significant decrease in CD133-positive cells, further corroborated by Western blot results
showing decreased levels of CD133, OCT4, and SOX2 proteins in the treated groups. This
indicates that HBO therapy has the potential to inhibit the formation and maintenance of
CSCs in vivo.

CSCs are a small subpopulation of cancer cells that have the ability to self-renew and
differentiate into multiple cell types, similar to normal stem cells [27,28]. CSCs are thought
to be responsible for tumor initiation, proliferation, and resistance to conventional cancer
treatments [29,30]. Therefore, targeting CSCs is an important strategy for developing
effective cancer therapies. Our study has shed light on the potential of HBO therapy
in this context. By reporting our observation of a reduction in the ability of GBM cells
to form cancer stem cells (CSCs) following HBO treatment, we present a novel avenue
for intervention. This finding underscores the promise of HBO therapy as an adjunctive
approach for GBM, as it appears to hinder the formation and maintenance of CSCs, which
are notorious for their role in tumor growth and therapy resistance. Additionally, our
research demonstrates that HBO therapy enhances the sensitivity of GBM to conventional
cancer treatments such as temozolomide (TMZ) and radiotherapy (RT). This synergistic
effect holds substantial clinical implications, as it suggests that HBO therapy, when used
in combination with standard treatments, could improve therapeutic outcomes for GBM
patients.

Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcription factor that plays a key
role in the response of cancer cells to hypoxia [31]. HIF-1α is overexpressed in many
types of cancer and has been linked to the survival and self-renewal of CSCs [32,33]. HBO
therapy has been shown to regulate the expression of HIF-1α in cancer cells [34] and affect
the behavior of CSCs in several ways [35]. By increasing oxygen supply, HBO therapy
reduces the hypoxic conditions that promote HIF-1α expression and CSC survival and
self-renewal [36], resulting in the downregulation of HIF-1α and a reduction in the survival
and self-renewal of CSCs. In our study, HBO therapy decreased the size of neurospheres
but did not affect their number. Moreover, HBO therapy did not reduce GBM cell viability.
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These findings suggest that HBO therapy attenuated GBM stemness but did not induce cell
damage.

Additionally, HBO therapy has been shown to enhance the efficacy of some chemother-
apy drugs [34,37] as well as the efficacy of radiotherapy among patients with solid tu-
mors [38,39]. The presence of hypoxia in solid tumors reduces their sensitivity to con-
ventional treatment modalities, such as ionizing radiation, and HBO therapy can help
overcome this treatment resistance by increasing tumor oxygenation levels [38]. By increas-
ing blood levels of oxygen, both that bound to hemoglobin and that in the plasma, HBO
therapy allows for greater oxygen diffusion distances, effectively reoxygenating previously
hypoxic cells. This improved oxygenation can enhance the cytotoxic effects of radiotherapy,
leading to improved local control of solid tumors. In our study, HBO therapy induced TMZ
and radiotherapy sensitivity both in vitro and in vivo.

However, HBO therapy also has disadvantages and limitations that should be con-
sidered. First, HBO therapy can have adverse effects, such as hyperoxic seizures and
barotrauma, which may limit its clinical application [40]. Second, the administration of
HBO therapy can be a complex and potentially dangerous procedure, making it challeng-
ing to implement in standard radiotherapy clinics [41,42]. Third, without tumor-specific
oxygen delivery, HBO therapy may not effectively target hypoxic tumor tissue, leading to
potential side effects due to oxygen toxicity [36,41].

5. Conclusions

HBO therapy did not increase the ability of proliferation of GBM cells in vitro, but it
did reduce their ability to form CSCs. In addition, HBO therapy increased the sensitivity of
GBM cells to chemotherapy and radiotherapy, both in vitro and in vivo. Therefore, HBO
therapy may be considered as an adjuvant therapy to chemotherapy and radiotherapy for
patients with GBM.
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